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TURBULENT PRANDTL NUMBER IN THERMALLY 

STRATIFIED SHEAR FLOWS OF AIR 
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Ah&m+-Turbulent FVaudtl number and eddy viscosity distribution in the thermally stratified turbulent 
boundary layer of an air flow are found to be functions of distance from the wall aud thermal stabilities 
of the flow field. Turbulent Randtl number in thermally stable shear flow of air is generally greater than 

that in thermally unstable shear flow of air. 
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NOMENCLATURE 

specific heat of air at constant pres- 
sure [cal/“Cg] ; 
gravitational acceleration [cm/s’] ; 
heat flux in the vertical direction 
[cal/cm”s] ; 
von KBrinAn constant ; 
molecular thermal conductivity 
[cal/cms “C] ; 
total thermal conductivity 
[cal/cms “C] ; 
eddy thermal diffusivity [cm2/s] ; 
eddy viscosity [cm’/s] ; 
length scale, TJ:/gA, [cm] ; 
total number of data points in a pro- 
file ; 
eddy Prandtl number ; 
laminar (molecular) Prandtl number ; 
turbulent (total) Prandtl number; 
dimensionless lapse rate; 
Richardson number ; 
dimensionless temperature, 

(T - ‘22/T* - B’cVi - Y&z; 
dimensionless velocity, 

h”i - unJ/“* - B’cVi - Yd/z; 
dimensionless height, 

N 

c 

1nYi; 

i=l 

dimensionless wind shear ; 
dimensionless temperature, 

-(T - T,)cpu,lH; 
local mean temperature [“K] ; 

friction temperature, - H/c,pku, 

c”Cl; 
wall temperature [“K] ; 
dimensionless velocity U/u*; 
friction velocity [cm/s] ; 
turbulent shearing stress [cm”/s”] ; 
local mean velocity [cm/s] ; 
mvariance between vertical velocity 
and temperature [“C-cm/s] ; 
distance from the wall [cm] ; 
dimensionless distance from the wall, 

yu*lv ; 
arbitrary constant ; 
dimensionless total thermal conduc- 
tivity ; 
dimensionless total viscosity; 
molecular dynamic viscosity 

Cg/cmsl ; 
total viscosity [g/ems] ; 
molecular kinematic viscosity 

c~‘/sl; 
density of air [g/cm31 ; 
total shear stress in the flow direction 
rg/cnq ; 
dimensionless eddy viscosity, K&; 
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( Ii* the variable at height y,; 
( hw mean value averaged over the profile. 

1. INTRODUCTION 

THE SOLUTION of the partial differential equation 
of heat transfer in a thermally stratified turbulent 
boundary layer requires certain assumptions 
and approximations. The first three assumptions 
are the mean velocity distribution, the mean 
temperature distribution and the variation of 
the total thermally conductivity. 

Assuming logarithmic profiles for the mean 
velocity and the mean temperature distribution, 
Spalding [l] obtained a constant turbulent 
Prandtl number, Pr, = 0.887. He also assumed 
a power series and exponential representation 
of the total thermal conductivity in terms of the 
mean velocity. Patankar [2] suggested power 
law profiles for the mean velocity and the mean 
temperature distribution. Patankar and Spald- 
ing [3] then assumed two-component velocity 
and temperature profiles which are equivalent 
to the log-linear profiles. Baker [4] also assumed 
a power series in terms of the mean velocity for 
the total thermal conductivity and found the 
heat transfer from a smooth wall into a steady, 
uniform-property turbulent boundary. He con- 
sidered a constant turbulent Prandtl number 
throughout the boundary layer. As shown by 
Kestin and Richardson [5], Johnson [6] and 
Swinbank [7], the turbulent Prandtl number in 
the boundary layer varies with position and 
experiments. They questioned [ 51 the wisdom of 
using a velocity profile obtained in thermally 
neutral shear flows to determine a turbulent 
Prandtl number and an eddy thermal con- 
ductivity in thermally stratified shear flows. The 
turbulent Prandtl number is not well known at 
the present time. There is a lack of agreement 
about its value and its variation in the thermally 
stratified turbulent boundary layer. Therefore, 
it must be determined experimentally in various 
thermal stratifications. 

The total viscosity in thermally neutral 
turbulent boundary layer can be measured ex- 

perimentally. However, when the turbulent 
shear flow is thermally stratified, it may not be 
measurable directly. Spalding [l] assumed that 
the eddy viscosity was a function of only the 
dimensionless velocity which, in turn, could be 
transformed to position. This function was given 
as a power series and exponential of the velocity, 
In experiments performed by one of the authors 
of this article [S], it was evident that the turbu- 
lent shearing stress in thermally stratified wall 
layer was not independent of the thermal 
stability of the stream. Consequently, the eddy 
viscosity should also depend on the thermal 
stability. 

The existence of a similarity between the 
mean velocity and the mean temperature pro- 
files in a thermally stratified turbulent shear 
flow was examined in [g-11]. The similarity 
is usually considered to hold only in the con- 
stant shear layer where the turbulent mixing 
predominates. In a neutral flow, a universal 
velocity profile or the so-called “law of the 
wall” [12] can prescribe the mean velocity 
distribution in this layer. However, the mean 
velocity distribution in a thermally stratified 
turbulent shear flow cannot be described by 
this universal profile for the same region. It is 
represented more accurately by a log-linear 
profile [ 131 such as 

U(y) = A, lny + B,y + C,, (1) 

where A,, B, and Ci can be determined experi- 
mentally by means of the least squares fitting of 
the measured velocity distribution. These co- 
efficients are in fact dependent upon the thermal 
stability of the flow field and B, approaches 
zero as the flow approaches a neutral stratili- 
cation. 

Similarly, the mean temperature distribution 
is given by 

T(y) = A, In y + B,y + C,. (21 

where A,, B, and C, can also be determined by 
the least squares fitting of the measured tempera- 
ture distribution and they also depend on the 
thermal stability of the flow field. 
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Consequently, the turbulent Prandtl number by rearranging, it yields the turbulent Prandtl 
and the eddy viscosity distributions in the layer number as 
can be calculated if the mean velocity and the 
mean temperature distributions in the constant (A,& - AmY 

shear layer of thermally stratified shear flows Al(Al + B,Y) 1 . 

are approximated by these log-linear profiles. 
The turbulent Prandtl number thus obtained 
varies substantially with the thermal stability 
in the constant shear layer of thermally stratified 
shear flows of air. The motivation for this study 
was to show this variation. 

2. BASIC EQUATIONS 

In this section the turbulent Prandtl number, 
eddy viscosity and eddy thermal diffusivity will 
be formulated. 

2.1 Derivation of the turbulent Prandtl number 

T=~,-~,,-,~y-~C,-c,]. 

The logarithmic term in equations (1) and (2) 
can be eliminated to yield 

Assuming that r = pui and H = -qm*kT,, 
the above equation can be rewritten as 

pr, = (&(; ;;;;;g. (4) 

For logarithmic profiles, Z3, and B, in 
equation (4) are equal to zero and consequently 
the turbulent Prandtl number for a neutral flow 
is given by 

+A, Pr, = -. 
kT,A, 

By using logarithmic profiles for the mean 
velocity and the mean temperature distributions 
in a fully developed turbulent flow as 

U=2.5u,hiy+C, (6) 

Differentiating the above equation with respect 
and 

to height y gives T = 2.22 kT, In y + C,, (7) 

(3) 

The gradient of temperature and velocity are 
related to the heat flux in the vertical direction 
and the shearing stress in the flow direction, 
respectively, as follows : 

H = -kh$ + c,ptv = - (k,, + cpp~~!.$ 

= _kdT 
’ dy 

and 

By substituting the above equations and the 
derivative of equation (1) into equation (3) and 

Spalding [l] obtained a constant value for the 
turbulent Prandtl number, Pr, = 0.887. Sub- 
stituting A, = 2.5 u, and AZ = 2.22 kT, into 
equation (5) will yield the above value. 

Assuming that 

u&z kT,A, = o&37, 

equation (4) is rewritten as 

Pr, = 0.887 : 1 ~2~~2. (8) 
1 1 

Equations (1) and (2) can also be rewritten as 

(14 
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and 

T@)= T,[lny+2y] +C, 

= T$MY) + c,. (24 

If the velocity and the temperature profiles are 
exactly similar, then the functionsf,(y) andfJy) 
converge to a single function which is called a 
universal function [ 131. The Monin-Obukhov 
[13] similarity theory (hypothesis) is not and 
will not always be exactly correct. Nevertheless, 
it has proved [9, 10, 141 to give approximately 
correct profiles. It should, however, be pointed 
out that a spectral similarity between u’ and t’ 
at the same height is quite essential to a similarity 
between the meanquantity profiles, because the 
meanquantity profiles are closely related to the 
turbulent transfer mechanism of momentum 
and temperature. 

Equation (4) in 
(la) and (2a) leads 

conjunction with equations 
to 

Pr 

t 
= 1 + B,YIA, 

1 + &Y/AI 
(9) 

The difference between equations (8) and (9) is 
due to the fact that equation (5) assumes the 
magnitude of unity when the A’s are substituted 
from equations (la) and @a), but it is equal to 
0.887 when the A’s are furnished by equations 
(6) and (7). According to Kestin and Richardson 
[S], the turbulent Prandtl number for a turbu- 
lent pipe flow is always smaller than unity. 
Nevertheless, based on the Lagrangian des- 
cription of the eddy motion, Tien [ 151 proposed 
that Pr, = 1. It is questionable up to this point 
what value one should assume for equation (5). 
However, it is obvious from equation (4) that 
Pr, is not constant across the turbulent boundary 
layer. 

Defining the dimensionless wind shear, S, and 
the dimensionless lapse rate, R, respectively, 
[16] as 

and 

SAP!!! 
ut+t dy’ 

,=LdT 
T+h 

one has, for log-linear profiles in the forms of 
equations (la) and (2a), 

S = 1 + B,y/A, 

and 

R = 1 + B,y/A,. 

Thus, equation (4) can be written as 

$42 R -- 
“.’ = kT,A, S’ 

By definition, the ratio R/S is given by 

R u, dT/dy -= --= 
kT, dUfdy 

-=Wdy Km = Pr, 
S -tvdUfdy = K, e 

(11) 

Therefore, equation (10) also states that the 
turbulent Prandtl number is approximately 
equal to the eddy Prandtl number. The first 
term of equation (4), which is the turbulent 
Prandtl number for a neutral flow, may be 
equal to unity. However, this does not neces- 
sarily mean that the turbulent Prandtl number 
in thermally stratified flow is unity as Kestin 
and Richardson [S] casted doubt that the 
presence of a thermal field would not affect the 
law of the wall [l]. 

2.2 Derivation of eddy viscosity and eddy thermal 
difjirsivity 

Defining the dimensionless total viscosity and 
the dimensionless total thermal conductivity, 
respectively, as 

6; ,Lt = 1 + $(u+) (12) 
CL 
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and 

(13) 

where 

cp(u+) = I&/v, (14) 

one obtains for the constant shear layer 

The rnol~ul~ kinematic viscosity v at atmo- 
spheric pressure is a weak function of the air 
temperature and according to data given by 
Schlichting [17] it can be appro~~tely ex- 
pressed in an exponential function for air 
temperatures from - 10°C to 60°C as 

v = 0.1302 exp [ONKXST], (15) 

where T is in degree C. Ass~g that von 
K&-man constant k in equation (14a) is equal to 
0.4 the eddy viscosity is given by 

li: 
?n 

= O-16 A: 

dU/dy 
- 0.1302 exp [0+00665T]. 

The velocity gradient in the vertical direction 
can be approximated by the finite difference 
teclmique and A, is given by equation (1). Thus, 
the eddy viscosity in the constant shear layer of 
a thermally stratified shear flow can be deter- 
mined once the mean velocity and the mean 
temperature profiles are measured. If the von 
K&man constant k is not exactly equal to O-4 
[18] throughout the layer, then equation (16) 
will not give accurate results. The dimensionless 
eddy viscosity, as defmed by equation (14), can 
also be found by means of lotion (14a). 
Dimensionless eddy viscosity in the constant 
shear layer is largely dependent upon the thermal 
stability of the flow field as well as upon the 
distance from the boundary wall The eddy 
viscosity distribution in the wall region of the 
neutral boundary layer flow, as shown in Fig. 
7-41 of [19], is a power profile of a dimension- 

less distance from the wall where the power 
assumes a value of 3 or higher. It reveals that 
the eddy viscosity is much &reater than the 
molecular k~ematic viscosity in the fully 
developed turbulent region, yu,/v > 30, at Re, 
= 8 x 104. Therefore, the second term on the 
right hand side of equation (16) is negligible in 
the constant shear layer of a neutral flow. The 
dimensionless eddy viscosity in the layer is also 
much greater than unity. Hence, the total 
viscosity in the layer is practically equal to the 
eddy viscosity such that 

6; Z &U’). (W 

The molecular (laminar) Prandtl number for 
air at a~osphe~G pressure and t~~rat~e in 
the range from 0” to 90°C is approximately 
constant and is equal to 0.72 [20]. Thus, the 
dimensionless total thermal conductivity can be 
deters from lotion (13) as 

6; X l-39 + (pI;Pr,. 

By deftition the turbulent (or total) Prandtl 
number is also given by 

Pr, = &Z/&L. 

Therefore, the first term on the right hand side 
of equation (13) is negligible and the dimension- 
less total thermal conductivity in the layer is 
practically furnished by 

e; = ~~~~ I (13a) 

The eddy thermal diffusivity in this layer can 
be found from the relation that 

so that 

P?,st: Pr, = K#$jK,, 

K LZ KJPr, 

Assuming that the total Prandtl nnmber in 
the viscous layer (laminar sublayer) or the 
buffer layer (transition zone) is constant? but 
that in the constant shear layer and the outer 

t One may assume that the total Prandtl number is 
equal to the laminar FVandti number in the viscous layer 
but it is an unknown function of y + in the other layem 
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layer (wake-like region) it is a function of y or U 
and that all variables are independent of x, the 
dimensionless temperature distribution may 
then approximately be given by [l] 

= 14Pr, + 7 Pr,Cv+)$dy+, (17) 
30 

where the point u+ = 14 corresponding to y+ 
= 30 is the upper boundary of the buffer layer 
and the unknown functions Pr&‘) and U+ = 
j(y’) must be determined experimentally. Both 
functions depend, to some extent, on the thermal 
stability of the flow field. Therefore, the mean 
velocity distribution function in thermally strati- 
field shear flows can be drastically different from 
that of the neutral flow as revealed in [S]. It 
may be suggested that the mean velocity dis- 
tribution assumes a log-linear profile in the 
constant shear layer and it changes to a velocity 
defect profile in a form similar to equation 
(7-85a) of [19] in the outer region. The wake 
function w and the constant term may assume 
different values from those given depending 
on the thermal stability of the flow field. 

3. RESULTS AND DISCUSSION 

Mean velocity and temperature distributions 
in thermally stratified shear flows measured in a 
wind tunnel [9] and Project Prairie Grass [21] 
are presented in Fig. 1. The thermal and 
momentum boundary-layer thickness at the test 
section in the wind tunnel were both approxi- 
mately equal to 70 cm but here only the 
constant shear layer of approximately 8 cm in 
height is considered. The shearing stress and the 
friction temperature in this layer are not 
measured directly, but are determined by the 
least squares fitting of the measured mean 
velocity and the mean temperature profiles to 
equations (la) and @a), respectively. 

Spalding [l] suggested that the turbulent 
Prandtl number might be constant and equal to 

6 % v o -2.0 J 
-1.2 -0.4 0.4 I.2 

RZZ 

FIG. 1. Log-linear profiles of mean velocity and mean 
temperature for heights from 0.5 to 8.2 cm (Wind-Tunnel 

[9]) or from 25 to 750 cm (PPG, [21]). 

0.887. However, equation (8) shows to the 
contrary that it varies with height. Figures 2-5, 
which arc plots of equation (9), show the varia- 
tion of turbulent Prandtl number in thermally 
stratified boundary layers (inner layers) Wind 
tunnel data are shown in Figs. 2 and 3, while 
field test dam are shown in Figs. 4 and 5. Both 
the laboratory and the field test data show that 
the turbulent Prandtl number in thermally 
stable flows is generally greater than that in 
thermally unstable flows This conclusion is in 
good agreement with the results of McVehil 
[22]. Johnson [6] also showed that the local 
turbulent Prandtl number was not constant 
across the boundary layer although he measured 
it at a section where the flow was not fully 
developed While the data shows that the 
turbulent Prandtl number varies with height, it 
does not follow the fourth root of the dimension- 
less height suggested by Swinbank [7]. 

When inversion or stable stratification pre- 
dominates, air pollution in an area can become 
serious. Thermally stable stratification in air 
flows is usually characterized by a large turbu- 
lent Prandtl number, Pr, B 1, and it occurs near 
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the ground at night with clear skies, Referring 
to equation (ll), a Iarge turbtit Randtl 
number means that the dimensionless lapse rate 
is much greater than the dimensionless wind 
shear. In other words, the eddy thermal diffu- 
sivity is much smakr than the eddy viscosity. 
Therefore, the mechanism of turbulent transfer 
of momentum is much greater than that of 
turbulent transport of heat in the constant shear 
layer of thermally stable flow. For thermally 
unstable flow, the opposite phenomena occurs. 

Distribution of the eddy viscosity, the dimen- 
sionless total viscosity, and the ~ensio~~s 
total thermal conductivity in the constant shear 
layer of thermally strati&d air flows are shown 
in Figs 6 and 7. They are typical variations of 
these properties in a thermally stratified turbu- 
lent shear flow of air in the laboratory (Fig 6) 
or in the field (Fig 7). The dimensionless total 
viscosity in the constant shear layer is obviously 

8 

6 

FIG. 3. Variation of turbulent PrandtI number across the 
constant shear layer of thermally unstable flows in a wind 

tunneL 

much greater than unity an4 therefore, is 
approximately equal to the dimensionless eddy 
viscosity as predicted by equation (12a). The 
dependence of the dimensionless total viscosity 
on the dimensionless velocity must be examined 
in the light of equation {ZO) of [l] or equation 
(14) of [23]. Typical variations of the dimen- 
sionless total viscosity versus the dimensionless 
velocity in the constant shear layer of thermally 
stratified shear flows are shown in Fig. 8. 
That the effect of the temperature distribu- 
tion on the mean velocity profile in the layer 
is not negligible implies the functional de- 
pendence of the dimensionless total viscosity 
not only upon the dimensionless velocity but 
also upon the thermal stability of the flow field. 
If this is the case, then equation (12) is superseded 
by 

6 = 1 i- I$@+,&) 
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RG. 4. Variation of turbulent Prandtl number across the 
constant shear layer of thermally stable flows in the field 

(PPG [21]). 

where 

(T, - G) 

The subscripts 1 and 2 refer to the boundaries 
of the constant shear layer. 

The dimensionless total thermal conductivity 
as defined by equation (13) is also apparently 
much greater than the reciprocal of the laminar 
Prandtl number of air in the layer. Thus, 
equation (13a) will give a moderately accurate 
value of it in the constant shear layer. The 
dependence of the total thermal conductivity 
on the dimensionless velocity should also be 
studied. The eddy thermal diffusivity in the 
layer can be obtained very easily by means of 
equation (11). 

The mean velocity distribution in a neutral 
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FIG. 5. Variation of turbulent Prandtl number across the 
constant shear layer of thermally unstable flows in the field 

(PPG [21]). 

turbulent boundary layer is approximately 
given by equations (15) of [23] or equation 
(10) of [24]. It is doubtful that the mean velocity 
distribution in thermally stratified shear flows 
will assume the same functional dependence 
on y as the neutral flow does. Therefore, 
the functional form of u+ = f(y+) for thermally 
stratified shear flows must be determined 
experimentally. 

4. CONCLUSIONS 

Turbulent Prandtl number in the constant 
shear layer is not necessarily always constant. 
It depends on the thermal stability of the flow 
field and may vary with height The turbulent 
Prandtl number in thermally stable turbulent 
shear flow is generally greater than that in 
thermally unstable turbulent shear flow of air. 

The eddy viscosity as well as the eddy thermal 
diffusivity in the constant shear layer of air may 
be determined. 
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FIG. 6. Eddy viscosity, dimensionless total viscosity and 
dimensionless total thermal conductivity in a laboratory 
Bow vs. height. The flow is thermally stable and the free 

stream velocity is 200 cm/s. Ri = O-16. 
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NOMBRE DE PRANDTL TURBULENT DANS DES BCOULEMENTS DE 
CISAILLEMENT D’AIR STRATIFIE THERMIQUEMENT 

R&mm&On trouve que le nombre de Prandtl turbulent et la distribution de la viscosite turbulente dam 
la couche limite turbulente stratitiQ thermiquement dun ecoulement d’air sont des fonctions de la dis- 
tance Q la paroi et des stabilites thermiques du champ d’tcoulement. Le nombre de Prandtl turbulent 
dam un ecoulement de cisaillement thermiquement stable d’air est generalement plus grand que celui 

dans un tcoulement de cisaillement thermiquement stable d’air. 

TURBULENTE PRANDTL-ZAHL IN THERMISCH AUSGERICHTETEN 
SCHERSTROMUNGEN BE1 LUFT 

Zuaammenfassung-Es zeigte sich, dass die Verteilung der turbulenten Prandtl-ZahJ und des Wirbelaus- 
tauches in der thermisch ausgerichteten turbulenten Grenzschicht einer Luftstriimung Funktionen der 
Entfemung von der Wand und der thermischen Stabilitgten des Strijmungsfeldes sind. Die turbulente 
Prandtl-Zahl in einer thermisch stabilen Scherstriimung bei Lufi ist gewijhnlich grosser als jeme in einer 

thermisch instabilen Scherstriimung bei Luft. 

AaHoTaqwa-Haii;rcHo, ~TO ryp6ynearnbre ~IIICJR npa~zTnfl x4 pacrrpe~enenrrr mrspeeo2t 
BRRKOCTLZ BTePMRYt?CKLI PaCCJIOeHKOM Typ6J'J‘eHTHOM IIOl-PaHIlYHOM CJIOe BO3~ylJIli"l?O IIOTOHa 

RB~R~TCR~~HK~11RM~~~CCTORHIl~OTCT~HKIlIIT~~~OBOi~CTO~Y~IBOCT~~OTOK3. Typ6yJrenT- 
HOe YIICJIO flpaH~JIHBTePMMYeCKI1 )'CTOZtYHBOM IIOTOKe BO3AJ'XaCO CfiBMrOM 06bIYHO6O.?bUIt? 

Pr B TepMIWeCKH HeyCTOfiYllBOM IIOTOKe BO3qyXaCO CRBEUOM. 


